Existence of Ramanujan primes for GL(3)

نویسنده

  • Dinakar Ramakrishnan
چکیده

Let π be a cusp form on GL(n)/Q , i.e., a cuspidal automophic representation of GL(n,A ), where A denotes the adele ring of Q . We will say that a prime p is a Ramanujan prime for π iff the corresponding πp is tempered. The local component πp will necessarily be unramified for almost all p, determined by an unordered n-tuple {α1,p, α2,p, . . . , αn,p} of non-zero complex numbers, often represented by the corresponding diagonal matrix Ap(π) in GL(n,C ), unique up to permutation of the diagonal entries. The L-factor of π at p is given by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes

We study the parallel properties of the Ramanujan primes and a symmetric counterpart, the Labos primes. Further, we study all primes with these properties (generalized Ramanujan and Labos primes) and construct two kinds of sieves for them. Finally, we give a further natural generalization of these constructions and pose some conjectures and open problems.

متن کامل

Ramanujan Primes: Bounds, Runs, Twins, and Gaps

The nth Ramanujan prime is the smallest positive integer Rn such that if x ≥ Rn, then the interval ( 1 2x, x ] contains at least n primes. We sharpen Laishram’s theorem that Rn < p3n by proving that the maximum of Rn/p3n is R5/p15 = 41/47. We give statistics on the length of the longest run of Ramanujan primes among all primes p < 10n, for n ≤ 9. We prove that if an upper twin prime is Ramanuja...

متن کامل

Zeta Functions of Complexes Arising from Pgl(3) Ming-hsuan Kang and Wen-ching

In this paper we obtain a closed form expression of the zeta function Z(X Γ , u) of a finite quotient X Γ = Γ\P GL 3 (F)/P GL 3 (O F) of the Bruhat-Tits building of P GL 3 over a nonar-chimedean local field F. Analogous to a graph zeta function, Z(X Γ , u) is a rational function and it satisfies the Riemann hypothesis if and only if X Γ is a Ramanujan complex.

متن کامل

Expander Graphs and Gaps between Primes∗

The explicit construction of infinite families of d-regular graphs which are Ramanujan is known only in the case d−1 is a prime power. In this paper, we consider the case when d− 1 is not a prime power. The main result is that by perturbing known Ramanujan graphs and using results about gaps between consecutive primes, we are able to construct infinite families of “almost” Ramanujan graphs for ...

متن کامل

Expander graphs and gaps between primes * Sebastian

The explicit construction of infinite families of d-regular graphs which are Ramanujan is known only in the case d 1 is a prime power. In this paper, we consider the case when d 1 is not a prime power. The main result is that by perturbing known Ramanujan graphs and using results about gaps between consecutive primes, we are able to construct infinite families of ‘‘almost’’ Ramanujan graphs for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002